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Abstract  
 
Optical indicators of water quality have the potential 
of enhancing the abilities of resource managers to 
monitor water bodies in a timely and cost-effective 
manner. However, the degree to which optical 
indicators are useful may depend on their 
applicability to data collected from multiple water 
bodies. In 1999, a Compact Airborne Spectrographic 
Imager (CASI) was flown over the relatively shallow 
Great Miami River (GMR), in Southwest Ohio, 
collecting hyperspectral bands of data. Concurrently, 
water quality samples and hand-held spectrometer 
data were collected directly from the river. Using 
correlations between the ground-truth data and 
combinations of spectral bands from the remotely 
sensed data, spectral indices were developed which 
could be used to estimate chlorophyll a, turbidity and 
phosphorus. In 2001, a similar study was conducted 
in which a CASI was flown over a portion of the 
Ohio River while ground-truth data were collected. 
These data were analyzed and tested against the 
spectral indices developed during the 1999 study. 
The GMR’s spectral index for chlorophyll a was 
applicable to the Ohio River data. However, slightly 
refined spectral indices for turbidity and phosphorus 
were required in this new environmental setting. 
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This study demonstrates the ubiquitous application of 
the chlorophyll a spectral index while revealing the 
limited reliability of the turbidity and phosphorous 
spectral indices. Although differences between the 
dynamics of the two rivers may have made these 
spectral indices incompatible, with further refinement 
they may yet prove to be useful tools that can be 
modified for use in other rivers to detect potential 
water quality problems. 
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Introduction 
 
Eutrophication diminishes water quality by 
promoting the excessive growth of algae, and 
increasing suspended organic material. When 
degraded, unpleasant odors and tastes can result from 
the excessive amounts of algae. Furthermore, 
microorganisms associated with eutrophication may 
pose health risks to consumers. It is important for 
water resource managers to find the most efficient 
way to diagnose the condition of drinking water 
sources. This may be especially demanding when 
assessing water quality damage in large rivers when 
field measurements may be time consuming, costly, 
and limited logistically. Increases in water quality 
parameters such as chlorophyll a, turbidity, total 
suspended solids (TSS), and nutrients are 
symptomatic of eutrophic conditions. Concentrations 
of these parameters can provide insight on the extent 
of eutrophication and the potential impact on aquatic 
biota and overall water quality. It would be 
advantageous to resource manager to be able to detect 
eutrophic conditions using multiple sites in a river 
without relying on field measurements. 
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Environmental researchers have been making efforts 
to monitor, simulate and control eutrophication for 
more than two decades. Various mathematical models 
have been developed and applied to rivers, lakes and 
estuaries (Lung 1986, Thomann and Mueller 1987, 
Kuo and Wu 1991, Kuo et al. 1994). All water 
quality models simulate increases in eutrophication 
based on the initial condition of the water body and 
therefore demand comprehensive water quality 
sampling programs. However, the conventional 
measurement of water quality requires in situ 
sampling and expensive and time-consuming 
laboratory work. Due to these limitations, the 
sampling effort often does not represent the condition 
of an entire water body. Therefore, the difficulty of 
overall and successive water quality sampling 
becomes a barrier to water quality monitoring and 
forecasting. 
 
Remote sensing could overcome these constraints by 
providing an alternative means of water quality 
monitoring over a greater range of temporal and 
spatial scales (Shafique et al. 2001). Remote sensing 
is the science of measuring the properties of objects 
by measuring the amount of radiation they absorb, 
emit, or reflect at various wavelengths along the 
electromagnetic spectrum. Optical water quality 
research has a broad scope for developing 
environmental indicators that are useful in assessing, 
quantifying and monitoring instream water quality. 
Measurable parameters for optical water quality 
includes the attenuation coefficient (KD) of 
photosynthetic active radiation (PAR), turbidity, 
concentrations of algal chlorophyll, suspended 
sediment, and dissolved organic matter. More 
fundamentally, the absorption and scattering of light 
by components of a stream’s water column provide 
basic information from which relationships with other 
water quality indicators (such as water clarity from 
Secchi disk readings) can be derived (Jupp et al. 
1994a, Dekker 1997). Although a fairly new method, 
the development of spectral indices can be a useful 
and easy tool for the diagnosis of eutrophic 
conditions by water resource managers. 
 
Remote sensing techniques for monitoring coastal 
and inland waters have been under development since 
the early 1980's. The tools used to develop these 
techniques have ranged from an empirically-based 

method for producing qualitative water quality maps 
to semi-empirical techniques and analytical methods 
for producing quantitative water quality maps 
(Dekker 1997). Several investigators (e.g., Dekker 
1993, Gitelson, et al. 1993, Jupp et al. 1994a, Jupp et 
al. 1994b) have developed empirical regression 
formulas for the prediction of lake water quality 
parameters from spectrometer data by employing 
spectral ratios, typically reflectance ratios, as the 
independent variables. The predicted water quality 
parameters have included chlorophyll a 
concentrations, suspended matter concentrations and 
turbidity.  
   
This investigation also focuses on the prediction of 
chlorophyll a concentrations, turbidity and total 
phosphorus concentrations by applying spectral 
indices developed from spectral data collected by 
spectro-radiometers as independent variables. 
However, this study is unique in that it has developed 
a regression formula for lotic systems, specifically 
using large rivers as a model. Spectral indices are 
transformations of reflectance values at specific 
wavelengths that minimally correspond to a field 
tested concentration of the parameter of interest and 
minimize the effects of other optically active 
constituents. The method used made correlations 
using simultaneous collected remote data, field 
spectrometer data, and field collected water quality 
data to demonstrate the feasibility of remote sensing 
techniques for water quality monitoring in large 
rivers. This paper also discusses the application of the 
optical properties of water for multiple river systems. 
This includes the determination of the optical 
properties of some water quality parameters and the 
development of spectral indices using hyperspectral 
airborne data for the shallower Great Miami River 
(GMR), and the transfer of these spectral indices to 
the larger and deeper Ohio River. 
 
Materials and Methodology    
 
The investigation utilized compact airborne 
spectrographic imager (CASI) data from 
approximately 60 river miles of the GMR (Shafique 
et al. 2001), and 80 river miles of the Ohio River. 
Based on the analyses of preliminary field 
spectrometer data, 19 appropriate spectral bands with 
5-nm spectral resolution were selected and 
programmed into the CASI unit. Data were collected 
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during four field efforts, carried out under similar 
conditions, during 1999 and 2001. While the 
hyperspectral data were being collected by the 
airborne CASI, in situ water samples were collected 
and a field spectrometer was used to collect spectral 
data directly from the river.  
 
The field, laboratory and remotely sensed data were 
analyzed in a systematic manner. First, the spectral 
library database was developed and used to establish 
the variability and/or stability of absorption and 
scattering coefficients in the GMR (Shafique et al. 
2001) and the Ohio River. Single spectral bands, 
ratios of spectral bands, and combinations of multiple 
bands were then used to develop linear regression 
equations. The semi-empirical models were 
developed in Excel (Microsoft Software, v. 2000) 
spreadsheets, and the imagery was analyzed using the 
ENVI (3.6) image processing software. First, in order 
to represent a homogeneous unit in the imagery, the 
water area was masked. The unsupervised image 
classification technique, K Mean, was used to cluster 
imagery into spectrally similar categories. This 
classification technique was used over another 
method, supervised classification, because the 
identifications made by the latter are made on the 
basis of human sight, which is limited to visible 
wavelength range (Vincent 1997). Scatter plots were 
created between spectrally classified image and 
ground-truthing data, based on their linear trends; 
simple linear regressions were used to determine the 
relationships between single and combinations of 
bands and water quality parameters. Based on the 
image pixels of the locations from which ground-
truth data were collected, equations were developed 
for particular water quality parameters. Then, the 
entire image was converted into a water quality map 
using the predictive equations. Some of the ground-
truth data were not used to develop the equations, but 
were instead used to validate the predictive quality of 
the equations. Using this semi-empirical approach, 
separate equations were developed for each water 
quality parameter. This approach was the primary 
means used to analyze the images collected for this 
study. 
 
The analytical approach of spectral image analysis 
used the spectral library that was developed from the 
1999 GMR study and the 2001 Ohio River study 
(Shafique et al. 2001). The reflectance/radiative 
transfer model used in that analytical approach 
quantifies and simulates the individual contributions 
of the water constituents to the reflectance measured 
by the remote sensors. The development of a 

reflectance/radiative transfer model depends on how 
well the specific absorption and scattering 
coefficients are determined for the various 
constituents. Once stable specific coefficients were 
established, the reflectance/radiative transfer model 
could be used to mathematically convert airborne 
imagery into water quality maps with limited use of 
ground-truth data. The use of the ground-truth data 
could be limited because a physical understanding of 
the interactions between the various water 
constituents and water reflectance was incorporated 
into the radiative transfer equations. The success of 
the analytical approach depends on the successful 
optical characterization of the water body and 
potential contributing sources such as industrial 
wastewater discharges. Once such a characterization 
is made, available optical water quality toolkits can 
be adapted to a particular study region. One of these 
prototype toolkits has been developed by Dekker 
(1997).  
 
Models 
 
All bands were tested for relationships with water 
quality parameter until it was found which bands and 
parameters correlated with the highest certainty. 
Scatter plots showed that linear models using the 
ratio of wavelengths 705/675 nm and the logarithmic 
ratio of wavelengths 554/675 nm can describe 
chlorophyll a and total phosphorus, respectively. 
Logarithmic transformation is useful in cases, such as 
this, where it is necessary to stress the difference 
between scores in a manner that is proportional to 
their ratio rather than in terms of their absolute 
difference. The band readings that represented the 
difference of 740 nm from 710 nm correlated best to 
turbidity. The r-values and R2 for each of these are 
above 0.7 and 0.5 respectively, therefore, indicating 
the ability to provide good linear models for these 
water quality parameters (Figure 1). Based on the 
linear relationship with water quality parameters, the 
spectral indices were then transferred to the following 
mathematical models to calculate the concentrations 
of the respective water quality parameters. 
 
Chlorophyll a = 48.849 * (705/675 nm) - 34.876 (1) 
 
TP = 0.1081 * log (554/675 nm) - 0.0371 
 (2) 
 
Turbidity = 186.59 * (710 – 740 nm) + 8.5516 (3) 
 
Results and Discussion 
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The results of this research can be divided into three 
general sections. The first section describes the 
preliminary data that were collected using the field 
spectrometer and the results of the water laboratory 
analyses. This data was used to explore the feasibility 
of using hyperspectral data for the identification and 
discrimination of in-stream features via the GMR and 
Ohio River. The second section describes the 
development of spectral indices using water 
constituents. It includes the A preliminary 
radiance/reflectance transfer model is presented that 
can be used to interpret remote sensing imagery in 
the same environment where the specific absorption 
and scattering coefficients are known. The third 
section addresses the correlations made between the 
remotely sensed imagery and the consequent 
estimations made for water quality parameters using 
the field spectrometer data. Through atmospheric and 
water column correction, the instrument calibrates the 
remotely-sensed data to the conditions that were 
present at the water’s surface at the time of CASI 
data acquisition. Both semi-empirical and analytical 
models were applied to mathematically convert the 
hyperspectral imagery into water quality maps. 
 
Relationships found using water quality and 
field spectrometer data 
 
The correlation between various water quality 
parameters was calculated using a Pearson’s 
correlation test. The most significant relationship 
observed was between the concentration of 
chlorophyll a plus pheophytin and the concentration 
of dissolved oxygen (DO). As is often observed in 
eutrophic systems, DO is negatively correlated (r = -
0.81) with chlorophyll a plus pheophytin. Overall, 
dissolved oxygen had a negative correlation with 
other measured parameters. 
 
There was a weak relationship between chlorophyll a 
concentration and water depth, and there was no 
significant correlation between reflectance at any 
wavelength and water depth. The water samples for 
turbidity data and the water samples for the 
chlorophyll a analysis were collected in close spatial 
and temporal proximity. Although it is assumed that 
the composition of the water did not vary 
significantly, it is recognized that an unaccounted 
error may be introduced when trying to establish 
relationships for these parameters. 
 
Development of spectral indices 
 

Spectral indices are simple arithmetic expressions of 
a combination of spectral bands that help reduce or 
eliminate some differences in viewing geometry and 
atmospheric conditions between measurements. Due 
to the large number of bands measured with the field 
spectrometer data, a sub-set of bands at 5 nm 
intervals was selected to develop the spectral indices. 
The bands that carry the most information about 
water quality parameters were selected by 
qualitatively analyzing field spectral plots of actual 
measurements. Generally, bands that show peaks and 
troughs (i.e., where the reflectance spectral curve 
changes slope) were selected. 
Correlation values were calculated between ground-
truth spectral data, water quality data from laboratory 
analyses, and the spectral indices developed from 
exploratory single bands, ratios of bands, differences 
between bands, and/or combinations of differences 
and ratios. The values from the indices with the 
highest correlation values with the ground-truth and 
laboratory data were used to produce scatter plots and 
calculate the R2 values. 
 
Once the bands were selected, three types of indices 
were developed. These were the difference, ratio, and 
combination of ratio and difference indices (Figure 1) 
originally developed from the GMR (Shafique et al. 
2001). Table 1 shows spectral indices for the GMR 
and Ohio, River. It is noteworthy that the same index 
for chlorophyll a (i.e., 705/675 nm) worked equally 
well for both rivers. However, the other two indices 
(i.e. turbidity and total phosphorus) required slight 
modifications in the spectral band selections. Likely 
the modification was needed due to differences of 
suspended sediments and their effects on reflectance 
in the two rivers. 
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Figure 6. Correlation between water quality 
parameters and spectral indices. Total phosphorus 
values were multiplied by 100 to fit in the scale. 
Table 4. Correlation coefficients for water quality 
parameters (WQP) and spectral indices (SI) for the 
two rivers. 
WQP                       SI              GMR Ohio 
River 
Turbidity            675-700           0.79                0.20 
Turbidity            710-740          -0.33                0.75 
Chlorophyll-a    705/675            0.71                0.72 
T.P         (554/740)-(620-740)   0.66                0.34 
T.P                  log(554/675)       0.29                0.77 
 
 
Correlations between water quality 
parameters and spectral data  
 
Generally, the correlations between the ground-truth 
data and spectral parameters were stronger with the 
ratio indices and weaker with the individual bands. 
The difference and ratio indices seem to identify with 
a particular group of ground-truth data. For example, 
the difference index performed better for parameters 
such as turbidity, TSS and secchi depth, while the 
ratio index correlated better with chlorophyll a and 
pheophytin parameters. These differences are likely 
attributed to the reduction of turbulent effects in the 
water body when the ratio index was used, while the 
difference index reduces some of the atmospheric 
effects. 
 
Spectral bands with wavelengths at 670, 675, 700, 
705 and 740 nm appear to dominate the spectral 
indices. Of these, difference indices involving 675, 
700 and 740-nm wavelengths provide information 
about turbidity while the ratio and combination 
indices using 672, 675, 700 and 705-nm wavelengths 
provide information about algal parameters. Taking 
into account all of the chlorophyll parameters, the 
concentration of chlorophyll a plus pheophytin 
correlated best with the same spectral parameters for 
the GMR and Ohio River. This can be explained by 
chlorophyll a and pheophytin tending to reflect and 
absorb light energy similarly. Logarithmic ratios of 
spectral bands in the green and red to near infrared 
region of the spectrum (i.e. 554 and 675-nm 
wavelengths) showed good correlation for TP. 
 
Using the relationships between chlorophyll a and a 
ratio index (i.e., 705/675-nm wavelengths) from the 
CASI image, the ratio’s 16 (K-means) spectral 

classes, converted into chlorophyll a concentration 
levels, ranged from 1.64 :g/l to 38.5 :g/l (Figure 2). 
The broad chlorophyll a levels are indicated on the 
atmospherically and radiometrically corrected CASI 
images acquired in September and November 2001 
(Figure 2). The overlay of these classes on a true 
color image revealed plumes of higher chlorophyll a 
concentrations at some of the confluences of 
tributaries with the Ohio River. For example, the 
relatively high concentration of chlorophyll a in the 
Licking River can be seen at the confluences with the 
Ohio River. Similarly, classes of turbidity and TP 
were overlaid on the CASI image (Figure 2). 
 

 
 
Figure 2. Water quality parameters map of Ohio 
River at the confluence of Licking River near 
Cincinnati, OH. Higher chlorophyll a and turbidity 
levels are found at the confluence. R2 values of 
scatter plots of observed and estimated parameters are 
above 0.9 indicating high accuracy. 
 
Conclusions 
 
This study demonstrates that the hyperspectral remote 
sensing technique can be a useful tool for monitoring 
the distributions of chlorophyll a concentrations in 
large rivers. In this study, the wavelengths of 675 nm 
and 705 nm from the CASI data were found to be the 
most suitable wavelengths for predicting chlorophyll 
a concentrations. Correlation analysis between 
remotely sensed data and chlorophyll a data has 
indicated the possibility of mapping chlorophyll a 
concentrations accurately. The strong correlations of 
reflectance ratios corresponding to these wavelengths 
with field spectrometer data were used in the 
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development of equations and constants for the 
estimated chlorophyll a concentrations in the 
Markland Pool. 
 
The results show that it is also feasible to estimate the 
relative chlorophyll a levels of large rivers when 
ground-truth data is not routinely available. This is 
essential for operational applications in large rivers 
where the total number of in situ water quality 
observations only cover a small fraction of the river 
for a limited time. Moreover, the results indicate that 
chlorophyll a has a unique spectral signature and it is 
possible to estimate chlorophyll a concentrations for 
any inland water body with the chlorophyll a spectral 
index. 
 
The methods developed and analyzed in this paper 
used CASI, but it is predicted that the same 
information can be revealed using hyperspectral data 
acquired by a satellite such as the Hyperion satellite. 
Although the spatial resolution of the data collected 
by the Hyperion satellite is only 30 m, in contrast to 
the 2-m resolution of the CASI data, the use of the 
satellite may be more cost effective and as reliable 
because the Hyperion spectrometer includes channels 
with the same wavelength bands employed here for 
chlorophyll a retrieval. However, it is still necessary 
to compare the results of data collected from in situ, 
CASI, and Hyperion studies to investigate the 
reliability of the data. Future research will provide 
information about whether satellite data can be 
substituted for field-collected data to determine water 
quality parameters such as chlorophyll a, nutrients, 
and turbidity. In the future, Hyperion remote sensing 
data may prove to be the preferable method for the 
detection of eutrophic water quality indicators over 
large areas of water. 
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